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Abstract 
This paper encourages the use of human voice features for 
mid-level representations of sounds. The human voice is a 
perfectly trained sound reference, combining two major 
classes of commonly used verbal sound descriptions, body 
tactile experience and every-day listening experience. Unlike 
pure technical representations, the human voice contains 
multidimensional physical and semantic features. It directly 
recalls cognitive patterns, and these, in return, bias 
perception. Examples of very sparse and capable 
representations are given by the extraction of vowel quality 
and nasality from short steady-state violin sounds. Such mid-
level features can be identified with the help of automation, 
for instance, using psychoacoustic signal processing and 
feature extraction or using learning methods and 
classification. However, features can also be identified 
without automation, simply by listening tests and 
verification against a listener’s own vocal tract. This general 
approach also supports manifold translation: backward to 
physical properties of a musical instrument and forward to 
other research fields such as cognitive musicology, or 
ethnological musicology, where researchers consider 
language-sensitive perception of sounds.  

Introduction 
We propose the use of human voice features for mid-level 
representations of short steady-state sounds. This proposal 
aims at bridging two stand-alone practices of describing 
sound. On the one hand, composers, musicians, makers of 
musical instruments, and recording engineers share a 
common language for describing sounds. Such language is 
more or less agreed on within communities. Even though 
language is not precise there is a clear image of how a 
flamenco guitar or a noble solo violin should sound like. On 
the other hand, the community of engineers prefers technical 
representations and automated feature extraction when 
analysing sound sources or when gaining metadata. Such 
technical representations may well be precise and repeatable, 
but the related numerical results and data plots do not easily 
translate, they cannot be listened to, nor do they create a 
sound image, and - even worse - they lack in representing 
what humans really perceive. These two practices seldom 
cooperate with each other in achieving descriptions that are 
at the same time stable and intelligible. 

Language alone is not really stable and precise. Some works 
systematically explored the general capability of a specific 
language for describing sounds. Anneliese Liebe 
investigated 1600 German sound describing words and their 
use in literature from the 16th to the 19th century. She 
concluded that the language did not develop clear, distinct 
descriptions - even widely used words like ‘sound’ or ‘tone’ 
remain imprecise [6].  

Technical representations, such as transforms, model 
parameters, and decompositions do only partially cover 
psychoacoustic reality and do not bridge to human’s per-
ception. There is limited confidence even in those commonly 
used examples of translation between semantic and technical 
descriptions: roughness, sharpness, brilliance, and loudness, 
to mention a few [2], [3], [4], [5]. Even today’s best practice 
neuro-computer-science perception models yield results only 
at the level of pattern recognition or rough classification, and 
not yet at the semantic level of sound perception [1]. 

Searching for intelligible translations, we start at one of the 
major findings of Liebe: verbal sound descriptions are 
usually derived from other sensory experience, tangible 
textures, body action, visible impressions, or from 
comparable everyday sounds. Humans seem to search for 
commonly experienced reference while differentiating 
sounds [6]. Human’s semantic sound descriptions strongly 
incorporate the capability of translation, i. e. the feature 
‘noble’ learned in the strings domain can be imagined for 
piano sounds. A learning machine would not play such a 
creative role. It would stick to recognition mode and 
therefore require new training data before resuming work. 

Voice plays an important role among the various classes of 
sounds such as musical instruments, every day sounds, or 
noise. Humans not only enjoy to imitate each other, but also 
to imitate other sound sources. This maybe one of the 
reasons why musicians refer to descriptors usually assigned 
to human voice, such as ‘singing’, ‘bawling’, ‘chirping’, or 
‘nasal’. Obviously, within the reference sound library used 
for communication, descriptors with a relation to one’s own 
body experience seem most helpful, especially those related 
to the best-trained sound source: the human voice. 

Dimensions of human voice 
Within the feature space of human voice, physical properties 
are likely to be captured easily. Such low-level features are 
pitch, loudness, spectrum and formants, vibrato, air flow 
through mouth and nose, or directivity. Mid-level features 
such as vowel quality, nasality, articulation, or prosody are 
more difficult to extract. Is the vocal tract under pressure or 
is it relaxed? Is somebody singing or speaking, or even in a 
mode in between: sprechgesang? The semantic level reaches 
both ends, the musical and the literal dimension: rhythm, 
musical line, speed and acceleration, dynamics, irony, wit. 
Every child easily senses excitement, joy, tension, sadness or 
frustration in a voice, even if it hears a voice for the first 
time in life. Semantic features exceed the scope of this paper 
of finding representations for short steady-state sounds, 
especially since the time axis becomes more and more 
relevant. 

Beyond this analysis approach of describing specific voice 
signals in the first place, human voice samples and their 
related feature sets incorporate the additional capability of 



translation. With the use of human voice signals, it is 
possible to directly access a listener’s resource of trained 
sound images. Vocal imitation of a trotting horse will recall 
the image of a horse and the real sound of the horse shoe. 
While sound descriptions on the basis of vocal imitation 
might be far from adequate in terms of acoustical 
representation, they still work, simply because a listener with 
similar hearing experience will recall patterns or will even 
construct what is missing. This translation capability goes 
beyond classification and works on the semantic level, too. 
One reason for this capability may be the early training 
phase, when we all learn our mother language just by 
listening and imitating. 

The same capability is even referenced to when describing 
sounds verbally. What do musicians specifically mean when 
they say they like the singing in their cello? Can a mid-level 
feature “singing character” be technically extracted and 
correspond to what people hear? 

Example: vowel quality 
Here we propose the vowel quality as an intelligible sound 
descriptor. While playing a violin, it is a simple exercise to 
imitate the observed sound with the vocal tract. In many 
cases, one will easily identify a matching vowel, and, at the 
same time, a matching contribution of nasal components. 
Parameters may vary from semitone to semitone, however, 
even a child is able to identify matching vowels. The 
identified vowel quality is an intelligible descriptor of sound. 
Where musicians’ verbal descriptions would vary from 
‘dark’ to ‘sonorous’ for a given sound, a good portion of 
what they actually want to say might be expressed by the 
vowel /a/, in a rather precise form. Descriptions of a ‘sharp’ 
or ‘shrill’ component in a sound might be covered by the 
vowel /i/, in a compact way. Automated feature extraction 
could now add stability to this capable representation, and, at 
the same time, translate between perception and technical 
representation.  

Searching for vowel quality in short- steady-state violin 
tones, Müller developed an extraction tool along selected 
phonetic libraries. This tool extracts the vowel quality from 
the formant structure in the sound and maps to the 
continuous space of tongue height and backness, as 
illustrated by the Jones diagram, Figure 1 [7]. The precision 
goes well beyond those rough estimates of tongue backness 
used in speech-to-text systems and is verified against 
libraries of the International Phonetic Association [8]. The 
development work is fully documented in [9]. 

Figure 1: Examples of well matching vowel qualities  
in voice / violin sound pairs 

The tool not only works on vocal sounds but also on strings. 
In a test, violin sounds have been imitated by listeners, 
effectively creating sound pairs of original sound and what a 
listener imagines while imitating the sound. The tool 
extracted a matching vowel quality for most of the sound 
pairs. Figure 1 shows some examples of sound pairs and the 
reader is invited to listen to the samples hosted under [10]. 

There are limits to this approach, which are clearly outlined 
in [9]. Due to the fact that the violin clearly differs from the 
vocal tract in terms of its generator principle: there may be 
no perceived vowel quality at all, or there may be a bistable 
perception of vowel quality in rare cases, or, in highly 
pitched sounds, the vowel quality becomes ambiguous. 

However, from 120 violin sounds randomly chosen from 
various libraries 40 samples were rated as obviously 
revealing vowel quality, another five samples were rated as 
very clearly revealing vowel quality. For about 40% of the 
violin sounds, vowel quality captures a lot of what listeners 
perceive in terms of sound quality. 

Again, the strength of this approach is not accurateness or 
perfect representation. The extracted parameters are quite 
useless for signal reconstruction. It is the combination of 
intelligibility and stability that is attractive for such analyses. 
The proposal takes advantage of the fact, that there is a wide 
and common understanding of phonetics. The idea of how 
‘o’ sounds in the word ‘home’ is commonly shared among 
many. Additionally, the vowel quality is a very compact and 
precise representation, and it is very stable over time. The 
other advantage is the option of translation to and from 
technical parameters: the description may likewise be found 
by machine extraction or by human sound comparison. To 
summarize, this contribution uses the existing stable sound 
image of vowels as an anchor for describing the perceived 
quality of short steady-state sounds of strings. 

When adding a statistical component to extracted vowel 
qualities, or when mapping the extracted vowel quality over 
time, a general character of an instrument may be captured. 
For instance, an instrument with strongly varying vowel 
quality across typical musical lines might be perceived as 
lively or vivid. On the contrary, stable vowel quality might 
be perceived as reserved or boring. 

Figures 2 and 3 illustrate the vowel quality over time for sets 
of Stradivary and Guarneri violins. In all samples, the same 
musician is playing the same theme from Bruch’s G minor 
concert [11]. There are many similarities between traces, as 
we compare within the same group of string instruments, but 
there are also differences between violin makers and 
between individual instruments. 

 

 

 

 

 

 



Figure 2: Vowel quality of five Guarneri violins, “Gibson” 1734 
(circle),  “Lafont” 1735 (cross),  “Plowden” 1735 (plus), “Ex-

Vieuxtemps” 1739 (square),  “De Beriot” 1744 (diamond). Data 
cleared from out-of-range entries. Top: pitch; middle: height; 

below: backness. 
 

Example: nasality 
Another frequently used term is nasality. Again, such feature 
alone is not able to fully capture the perceived sound quality 
however it is one of the telling ones in a set of features. 
From a physical point of view, nasality has about seven 
ingredients observable in the frequency domain: a wider 
bandwidth and lower frequency of the first formant, 
displacement of other formant frequencies, additional 
resonances between 250 Hz and 500 Hz, little energy in the 
range of 500 Hz, additional energy between formants, less 
total energy of a sound [12]. Some components refer to 
learned sound images, others require observation over time. 
The difficult part in developing a “nasality meter”, however, 
is creating an adequate perception model. Due to listeners’ 
limited attention, components are likely to mask each other; 
and linear combinations seem not to be adequate. In an 
investigation, the typical position and the bandwidth of 
formants have been measured for nasal and non-nasal vocal 
sounds. Typical parameters for nasal sounds have been 
added to Stradivari sounds, and subjects have been asked for 
differences between original and modified violin sounds. 
Among the many differences perceived by individuals, 
nasality was not mentioned [13]. Therefore both, finding an 
adequate model and employing this to violin sounds seem 
difficult. Yet, it does not seem difficult to humans. 

Figure 3: Vowel quality of six Stradivari violins, “Spanish” 1677 
(circle),  “Ernst” 1709 (cross),  “Joachim” 1714 (plus), 

“Monasterio” 1719 (square) ,  “Madrileno” 1720 (diamond),  
“Rode” 1733 (triangle). Data cleared from out-of-range entries. 

Top: pitch; middle: height; below: backness. 
 

Sparse representation 
Representations for human voice features can be very sparse. 
For example, the vowel quality is represented by only one 
byte of information for each 100 ms to 500 ms time window. 
The entropy is therefore 5.000 to 50.000 times smaller than 
the code entropy of the original 16-bit time series at sample 
rates between 24 kHz and 48 kHz. 

Meaningful and capable representation 
The capability of using human voice features as a reference 
is manifold. Intelligibility: the derived features can be well 
understood; even children are able to imitate sounds. The 
identified parameters directly correspond to experienced 
sounds. On the contrary, for most other technical features 
used in the engineering community there are no reference 
sound images that would be recalled when reading numerical 
results or viewing plots. Translation: representations can be 
extracted automatically and manually, they can directly be 
translated from engineering context to perception and way 
back. Another translation option is the back propagation of 
identified technical features to the physics of musical 
instruments. Universality: this approach bases on humans’ 
general capability to imitate all kind of sounds with the vocal 
tract and also on the general readiness of recipients to 
understand such imitation and to construct what is missing 



or to imagine the imitated feature on recalled sounds learned 
earlier. This is common experience, that a non-vocal sound 
somebody hears or imagines can directly trigger the same 
imagination in somebody else simply by using vocal 
imitation. Such carrier hosts quite a universal capability of 
representation. The sparse and sometimes not adequate 
feature representation therefore carries much more than a 
few bits of information. It triggers a recipient’s imagination. 
The essence of what has been perceived and maybe 
communicated by means of vocal imitation will be morphed 
with a known target sound. In our example this target sound 
is the violin. 

Link to ethnological musicology 
Yet another capability of this simple approach is its instant 
usability in other specific sciences. For ethnological 
musicology, i.e. a valuable discussion and a research field 
opens up, since the rendezvous of voice and strings in the 
Jones diagram allows for a direct mapping of sound against 
the stable sound images in different languages. These images 
always hold discrete reference points in the diagram. 
Acoustically delivered vowel qualities nearby a reference 
point are likely to be mapped, or locked-in to that reference, 
as part of the cognitive process. The population of discrete 
reference points across the Jones plane varies from language 
to language. A few languages use only three distinct vowels. 
Languages with more than twelve vowels are relatively 
uncommon, although some widely-spoken languages have 
large vowel inventories, particularly Germanic languages. 
For example, the English language uses 14 to 16 vowels 
including diphthongs, and Swedish has the most distinct 
vowel qualities in the height-backness-roundedness 
spectrum, with 17 different monophthongs. French has 16 
vowel qualities including nasals. Sedang holds the known 
record with 55 different vowels.  

Therefore, some prejudice might go along with listeners’ 
life-long training experienced in the given language 
environment. Mapping a violin’s population of parameters in 
the Jones plane against the discrete vowel sets of specific 
languages might well open the question of what people 
really will hear.  

Conclusions 
The human voice is a perfectly trained sound source with the 
capability to imitate non-vocal sounds, too. It is therefore 
proposed here, to use human voice features as a reference for 
qualified descriptions of short steady-state sounds. Examples 
are the successful extraction of vowel quality from violin 
sounds, or nasality. A disciplined extraction of parameters 
that describe human voice features, will facilitate powerful 
representations, and the translation capability of human 
voice will be inherited. This approach is against the 
mainstream of using increasingly complex models and 
intense calculation, which often deliver precise but explicit 
results and little application value. Human voice feature 
representations are typically sparse and intelligible. The 
simplicity also facilitates application outside the engineering 
context and in other research fields, e.g. Ethnological 
Musicology.  
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